Heavy Ion Simulation on Geant4

Chanyoung Lee, Yonsei HEP drakaballagi@gmail.com

2015 Joint Winter Conference on Particle Physics, String, and Cosmology Jan 28, 2015

Contents

- 1. Introduction
- 2. Simulation Setup
- 3. Simulation Results
- 4. Summary & Plan

Introduction (1)

RAON is the heavy ion accelerator

- By colliding heavy ions to target, RAON is expected to produce rare isotopes.
- Before its start, the colliding process need to be simulated.

Introduction (2)

Geant4

- Geant4 is a Monte-Carlo based toolkit for the simulation of the passage of particles through matter.
- Stands for "GEometry ANd Tracking".

Introduction (3)

Physics List

- The class defined as physics factory in Geant4.
- A physics list is constructed by several physics models.

• E.g.,

FriTioF +Precompound +BERTini intranuclear cascade = FTFP_BERT

Introduction (4)

- As the preceding step of experiments in RAON, I run the simulations on Geant4.
- My goal:
 - 1. Select the proper Physics List.
 - 2. Simulate the experiments planned in future.

Simulation Setup

- Geant4 version: Geant4.10.0.p02
- CPU: AMD Athlon 64 X2 5400+ (2.8 GHz)
- Beam: Protons (1 GeV momentum)
- Target: cylindrical Uranium Carbide (6 mm thick, 2500 K)

Simulation Results

- Number of Secondary Particles
- CPU Performance
- Caesium isotopes
- Francium isotopes

Number of Secondary Particles

PhysicsList	Beam on	Secondary Particles	Cs	Fr
FTFP_BERT	2,000,000	302,698	2,744	62
Shielding	2,000,000	8,588,472	9,217	8,855
FTFP_INCL++	2,000,000	373,484	2,521	513
FTFP_INCL++_HP	2,000,000	414,821	2,891	547
QGSP_INCL++	2,000,000	373,655	2,528	515
QGSP_INCL++_HP	2,000,000	415,065	2,754	568
QGSP_BIC	2,000,000	302,013	2,420	743
QGSP_BIC_HP	2,000,000	342,695	2,937	789
QGSP_BERT	2,000,000	301,683	2,606	92
QGSP_BERT_HP	2,000,000	369,584	2,986	69

AMD Athlon 64 X2 5400+ @2.80 GHz

CPU Performance

Caesium isotope distribution

- Picked up all the Caesiums in secondary particles.
- Compare with two experiments.

Caesium Isotope Distribution

Eur. Phys. J. Special Topics 150, 297-300 (2007)

Simulation of Caesium Isotope Distribution

Francium isotope distribution

- Similar to Caesium isotope distribution, picked up all the Franciums in secondary particles.
- Compare with two experiments.

Francium Isotope Distribution

Eur. Phys. J. Special Topics 150, 297-300 (2007)

Simulation of Francium Isotope Distribution

Summary & Plan

- Physics List Selection
 - Cross-Section will be studied to be exact.
- Further researches
 - dE/dx and He isotope distribution is now on progress.
 - $N \rightarrow C$ is planned.

References

- 1. Eur. Phys. J. Special Topics 150, 297–300 (2007)
- 2. Nuclear Physics A 725 (2003) 213-253
- 3. Nuclear Physics A 724 (2003) 413-430
- 4. K. A. Olive et al. (Particle Data Group), Chin. Phys. C, 38, 090001 (2014)

Backup slides

What the words in physics Lists stands for

PhysicsLists	
FTF	Fritiof model
QGS	Quark-gloun-string model
Ρ	Precompound model
BERT	Bertini intranuclear cascade model
INCL++	Liège intranuclear cascade model
BIC	Binary cascade model
HP	NeutronHP model
Shielding	FTFP_BERT_HP with Ion Quantum Molecular Dynamics model

dE/dx of Uranium Carbide

calculated with Bethe equation

Simulation of dE/dx of Carbon

Helium Isotope Distribution